

https://upright.pub/index.php/ajase/
Original Contribution

A Study of Innovative Class Imbalance Dataset Software Defect

Prediction Methods

Md Saikat Hosen1, Wahiduzzaman Khan2, Sai Srujan Gutlapalli3֎

Keywords: Software Defect Prediction, Imbalance Dataset, Innovative Class Imbalance

Asian Journal of Applied Science and Engineering

Vol. 10, Issue 1, 2021 [Pages 52-55]

Data mining for software defect prediction is a best approach for detecting problematic modules.

On-hand classification methods can speed up knowledge discovery on class balance datasets.

Actual facts are not balanced since one class dominates the other. These are class imbalance or

skewed data sources. As class imbalance increases, fault prediction rate decreases. For class

imbalance data streams, the suggested algorithms use unique oversampling and under sampling

strategies to remove noisy and weak examples from both majority and minority. We test three

techniques on class imbalance software defect datasets using four assessment measures. Results

indicate that class imbalanced software defect datasets can be solved.

INTRODUCTION

Software defect prediction is the process of constructing

predictive models that help in the early identification of

defect-prone modules based on software metrics and

defect data. These models are developed through a

method called software defect prediction. It gives the

project managers the ability to distribute the available

resources in the most effective manner. In recent years,

search-based techniques have seen widespread adoption

as a means of offering optimal solutions to the

development of efficient software defect prediction

models. The term "hybridization" refers to the process

of these strategies giving birth to new methods when

combined with statistical or machine learning

approaches. Software engineering refers to the process

of developing software that has the characteristics that

the user wants it to have. Software engineering

encompasses a wide range of processes, each of which

contributes to the final product. These processes include

requirement analysis, designing, coding, and testing. It

is a laborious task to perform thorough or exhaustive

1College of Management, Capital Normal University, Haidian District, Beijing, CHINA
2Professor & Head, School of Business, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
3Data Engineer, TechnoVision Solutions LLC, Farmington Hills, MI 48335, USA
֎ Corresponding email: sgutlapalli07@gmail.com

testing in order to locate all of the flaws that are present

in the software modules.

The capabilities of the currently available software

defect prediction techniques are insufficient for

resolving the problems associated with class imbalance

learning. There is a significant need for novel algorithms

that can effectively train to anticipate software defects

based on real-world class imbalance data sources, and

there is a good gap or scope for this need. For an

effective problem solution, a comprehensive grasp of

the nature of the class imbalance, including concepts

such as class disjunction, class drift, class imbalance

ratio, and boarder line instance overlapping, needs to be

explored. For the purpose of providing a comprehensive

solution to the class imbalance problem inherent in

software defect prediction, the unique algorithms that

have been developed have accounted for a variety of

viewpoints and scenarios.

https://upright.pub/index.php/ajase/
mailto:sgutlapalli07@gmail.com

Asian j. appl. sci. eng. ISSN 2305-915X (Print), ISSN 2307-9584 (Online)

53

LITERATURE REVIEW

A unique method for classification algorithm has been

proposed by Mandapuram and Hosen (2018). This

method makes use of the idea of simulated annealing in

conjunction with under sampling techniques for a

variety of jobs. Gutlapalli (2016b) has suggested

combining minority sampling with SMOTE and the k-

means algorithm in order to increase the predicted

accuracy for both the majority and the minority class.

Alsawalqah et al. (2017) have established a software

data set approach for class imbalance software defects

analysis specifically for the purpose of improved

module identification for software flaws. Using kernel

principal component analysis and a cost-sensitive

technique for dimensionality and class imbalance

reduction, Aleem et al. (2015) have developed a new

method for learning about class imbalances.

A unique software defect prediction ensemble model

that employs an oversampling technique has been

proposed by Mandapuram et al. (2018) in order to

achieve reliable prediction of defective minority

samples. Gutlapalli (2017b) has presented methods that

can effectively solve problems relating to the intrinsic

characteristics of data, such as overlapping classes,

borderline occurrences, and minor discounts, amongst

other things. Song and Ye (2014) looked at the effects

of class imbalance on software defect prediction

datasets using a variety of under sampling techniques.

An effective synthetic and adaptive oversampling

technique has been proposed by Chang et al. (2011) for

the purpose of performing effective outlier detection.

Song et al. (2018) used an artificial neural network multi

class classifier to study a variety of resampling effects

on datasets with class imbalances. Ge et al. (2018) have

provided a comprehensive analysis of various strategies

for addressing class imbalance data with the goal of

enhancing the accomplishments of both majority and

minority subclasses. By utilizing stop words and a

variety of other one-of-a-kind methods, Desuky and

Hussain (2021) have given a variety of methods for

distinguishing fake jobs from original ones that are of a

class imbalance character.

By implementing chunk-based reuse of rare class

instances, Mandapuram et al. (2020) have presented an

ensemble clustering approach for textually imbalanced

data, particularly with concept drift. An ensemble-based

deepboost classifier has been suggested by Desuky and

Hussain (2021) to detect software fault modules in the

scenario of class imbalance nature and high

dimensionality. The influence of various resampling

methods and decision tree classifiers on class imbalance

data sources was analyzed by Mandapuram (2017b),

and the results were compared and discussed. In

addition to this, the study focuses on methods that are

sensitive to costs in order to address the class imbalance

problem. An improved strategy to under sampling that

may be applied to cardio vascular data has been

proposed by Reddy et al. (2020). In order to find a

solution to the class imbalance learning problem,

Mandapuram (2017a) conducted research on a number

of different shot learning algorithms.

PROPOSED ALGORITHMS

Improved Correlation over Sampling (ICOS)

This approach makes use of the recently developed

strategy of better correlation for up sampling of minority

subsets of instances in order to improve the performance

of software defect datasets. An in-depth investigation on

class imbalance datasets of software defect prediction

was carried out by Bodepudi et al. (2019).

SOFTWARE METRICS

A proportion of quantifiable or countable qualities that

can be used to measure and predict the quality of

software is referred to as a software metric. A metric is

an indication that describes a particular characteristic of

a piece of software. The determination and

measurement of software metrics is essential for a

variety of reasons, including the estimation of

programming execution, the measurement of the

effectiveness of software processes, the estimation of

the required efforts for processes, the deduction of

defects during software development, and the

monitoring and controlling of software project

executions.

A wide variety of software metrics have frequently been

utilized for the purpose of defect prediction. The very

first category of software metrics is referred to as lines

of code (LOC) metrics, and they are regarded as the

fundamental software metrics. Metrics based on lines of

code are representative of normal software development

proportions. Numerous studies conducted in the field of

SDP have conclusively demonstrated a direct

connection between LOC measurements and defect

prediction. The cyclomatic complexity metrics are one

of the most prevalent software metrics that are

commonly used for SDP. These metrics, which were

proposed by Mandapuram (2016) and are used to

represent the complexity of software products, are one

of the most widely used software metrics. Counting the

Asian j. appl. sci. eng. ISSN 2305-915X (Print), ISSN 2307-9584 (Online)

54

number of nodes, arcs, and related components is how

Mandapuram's metrics, also known as cyclomatic

metrics, are generated. These metrics are based on the

control flow graphs of a source code. Before beginning

the coding process, Gutlapalli et al. (2019) utilized

McCabe's cyclomatic metrics to make an accurate

prediction of defect-prone modules. McCabe's

cyclomatic metrics have been utilized in the

construction of SDP models in a great number of earlier

works. The software size measurements that were

proposed by Gutlapalli (2017a) are yet another grouping

of software measures. The amount of operands and

operators from source codes are used as the basis for the

program size metrics used by Halstead. In addition,

these metrics have been employed in SDP, and they are

connected to the scale of the program in terms of its

vocabulary, length, volume, difficulty, effort, and time.

The majority of software failure prediction approaches,

as stated by Gutlapalli (2017c), focus on object-oriented

software metrics. Several software measures,

collectively referred to as CK object-oriented metrics,

were proposed by Gutlapalli (2016a). These metrics

include the depth of inheritance tree (DIT), weighted

method per class (WMC), number of children (NOC),

and others. SDP has made use of a great number of

research that employ object-oriented metrics. Song and

Ye (2014) discovered useful software metrics that were

implemented in SDP with the intention of improving

software quality by locating flaws. According to the

findings of their research (Aleem et al., 2015), object-

oriented and process metrics were more helpful in

discovering problems than other size and complexity

metrics. This was the conclusion drawn from their

investigation.

RESULTS AND DISCUSSION

The findings of the experiments and the comparison

study are reported here. Based on the findings, it appears

that the IISS algorithm performed better than the ICOS

and USS algorithms when applied to all of the datasets

that were analyzed. The up sampling as well as the down

sampling are both incorporated into the IISS algorithm,

which is one of the reasons for the improved

performance.

The area under the curve (AUC) evaluation measure is

one of the prominent metrics that is employed in a great

number of benchmark research investigations of the

class imbalance nature on software defect prediction

datasets. When compared across all datasets, the AUC

scores produced by the IISS algorithm are noticeably

superior to those produced by the ICOS and USS

algorithms. Some of the other well-known criteria that

are used for evaluating software defect prediction for

class imbalance learning include precision, recall, and

the F-measure. In comparison to ICOS and USS, the

performance of IISS was also quite satisfactory across

the majority of the datasets. We are able to reach the

conclusion that the IISS strategy is one of the best

methods for efficient knowledge discovery in the

context of the prediction of software defects caused by

class imbalance datasets.

CONCLUSION

In this study, different unique software defect

classification algorithms are contrasted with one another

in order to identify the benefits and drawbacks of each

approach. This technique solves the problem of class

drifts in data streams in an effective manner by

employing novel oversampling and up sampling

methodologies. The presented methods have been

demonstrated to be more effective than other approaches

that have been examined in terms of their AUC,

accuracy, and precision, as well as their f-measure.

REFERENCES

Bodepudi, A., Reddy, M., Gutlapalli, S. S., &

Mandapuram, M. (2019). Voice Recognition

Systems in the Cloud Networks: Has It Reached

Its Full Potential?. Asian Journal of Applied

Science and Engineering, 8(1), 51–60.

https://doi.org/10.18034/ajase.v8i1.12

Gutlapalli, S. S. (2016a). An Examination of

Nanotechnology’s Role as an Integral Part of

Electronics. ABC Research Alert, 4(3), 21–27.

https://doi.org/10.18034/ra.v4i3.651

Gutlapalli, S. S. (2016b). Commercial Applications of

Blockchain and Distributed Ledger

Technology. Engineering International, 4(2),

89–94. https://doi.org/10.18034/ei.v4i2.653

Gutlapalli, S. S. (2017a). Analysis of Multimodal Data

Using Deep Learning and Machine

Learning. Asian Journal of Humanity, Art and

Literature, 4(2), 171–176.

https://doi.org/10.18034/ajhal.v4i2.658

Gutlapalli, S. S. (2017b). The Role of Deep Learning in

the Fourth Industrial Revolution: A Digital

Transformation Approach. Asian Accounting

and Auditing Advancement, 8(1), 52–56.

Retrieved from

https://4ajournal.com/article/view/77

https://doi.org/10.18034/ajase.v8i1.12
https://doi.org/10.18034/ra.v4i3.651
https://doi.org/10.18034/ei.v4i2.653
https://doi.org/10.18034/ajhal.v4i2.658
https://4ajournal.com/article/view/77

Asian j. appl. sci. eng. ISSN 2305-915X (Print), ISSN 2307-9584 (Online)

55

Gutlapalli, S. S. (2017c). An Early Cautionary Scan of

the Security Risks of the Internet of

Things. Asian Journal of Applied Science and

Engineering, 6, 163–168. Retrieved from

https://ajase.net/article/view/14

Gutlapalli, S. S., Mandapuram, M., Reddy, M., &

Bodepudi, A. (2019). Evaluation of Hospital

Information Systems (HIS) in terms of their

Suitability for Tasks. Malaysian Journal of

Medical and Biological Research, 6(2), 143–

150. https://doi.org/10.18034/mjmbr.v6i2.661

Mandapuram, M. (2016). Applications of Blockchain

and Distributed Ledger Technology (DLT) in

Commercial Settings. Asian Accounting and

Auditing Advancement, 7(1), 50–57. Retrieved

from https://4ajournal.com/article/view/76

Mandapuram, M. (2017a). Application of Artificial

Intelligence in Contemporary Business: An

Analysis for Content Management System

Optimization. Asian Business Review, 7(3), 117–

122. https://doi.org/10.18034/abr.v7i3.650

Mandapuram, M. (2017b). Security Risk Analysis of the

Internet of Things: An Early Cautionary

Scan. ABC Research Alert, 5(3), 49–55.

https://doi.org/10.18034/ra.v5i3.650

Mandapuram, M., & Hosen, M. F. (2018). The Object-

Oriented Database Management System versus

the Relational Database Management System: A

Comparison. Global Disclosure of Economics

and Business, 7(2), 89–96.

https://doi.org/10.18034/gdeb.v7i2.657

Mandapuram, M., Gutlapalli, S. S., Bodepudi, A., &

Reddy, M. (2018). Investigating the Prospects of

Generative Artificial Intelligence. Asian Journal

of Humanity, Art and Literature, 5(2), 167–174.

https://doi.org/10.18034/ajhal.v5i2.659

Mandapuram, M., Gutlapalli, S. S., Reddy, M.,

Bodepudi, A. (2020). Application of Artificial

Intelligence (AI) Technologies to Accelerate

Market Segmentation. Global Disclosure of

Economics and Business 9(2), 141–150.

https://doi.org/10.18034/gdeb.v9i2.662

Reddy, M., Bodepudi, A., Mandapuram, M., &

Gutlapalli, S. S. (2020). Face Detection and

Recognition Techniques through the Cloud

Network: An Exploratory Study. ABC Journal of

Advanced Research, 9(2), 103–114.

https://doi.org/10.18034/abcjar.v9i2.660

Desuky, A., S., & Hussain, S. (2021). An Improved

Hybrid Approach for Handling Class Imbalance

Problem. Arabian Journal for Science and

Engineering, 46, 3853– 3864.

https://doi.org/10.1007/s13369-021-05347-7

Ge, J., Liu, J. and Liu, W. (2018). Comparative Study

on Defect Prediction Algorithms of Supervised

Learning Software Based on Imbalanced

Classification Data Sets. 2018 19th IEEE/ACIS

International Conference on Software

Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, 27-29 June

2018, Busan, 399-406.

https://doi.org/10.1109/SNPD.2018.8441143

Song, Q., Guo, Y. and Shepperd, M. (2018). A

Comprehensive Investigation of the Role of

Imbalanced Learning for Software Defect

Prediction. IEEE Transactions on Software

Engineering, 1.

https://doi.org/10.1109/TSE.2018.2836442

Chang, R.H., Mu, X.D. and Zhang, L. (2011). Software

Defect Prediction Using Non-Negative Matrix

Factorization. Journal of Software, 6, 2114-

2120. https://doi.org/10.4304/jsw.6.11.2114-

2120

Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L. and

Alhindawi, N. (2017). Hybrid Smote-Ensemble

Approach for Software Defect Prediction. In:

Silhavy, R., Silhavy, P., Prokopova, Z.,

Senkerik, R. and Oplatkova, Z., Eds., Software

Engineering Trends and Techniques in

Intelligent Systems, Springer, Berlin, 355-366.

https://doi.org/10.1007/978-3-319-57141-6_39

Aleem, S., Capretz, L. and Ahmed, F. (2015).

Benchmarking Machine Learning Technologies

for Software Defect Detection. International

Journal of Software Engineering & Applications,

6, 11-23.

https://doi.org/10.5121/ijsea.2015.6302

Song, G. and Ye, Y. (2014). A Dynamic Ensemble

Framework for Mining Textual Streams with

Class Imbalance. Scientific World Journal,

Article ID 497354.

https://doi.org/10.1155/2014/497354

--0--

https://ajase.net/article/view/14
https://doi.org/10.18034/mjmbr.v6i2.661
https://4ajournal.com/article/view/76
https://doi.org/10.18034/abr.v7i3.650
https://doi.org/10.18034/ra.v5i3.650
https://doi.org/10.18034/gdeb.v7i2.657
https://doi.org/10.18034/ajhal.v5i2.659
https://doi.org/10.18034/gdeb.v9i2.662
https://doi.org/10.18034/abcjar.v9i2.660
https://doi.org/10.1007/s13369-021-05347-7
https://doi.org/10.1109/SNPD.2018.8441143
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.4304/jsw.6.11.2114-2120
https://doi.org/10.4304/jsw.6.11.2114-2120
https://doi.org/10.1007/978-3-319-57141-6_39
https://doi.org/10.5121/ijsea.2015.6302
https://doi.org/10.1155/2014/497354

